Properties

Label 2420.r.10.b1.a1
Order $ 2 \cdot 11^{2} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:D_{11}$
Order: \(242\)\(\medspace = 2 \cdot 11^{2} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{5}, c^{2}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{22}:F_{11}$
Order: \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{11}^2:C_2^2$, of order \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \)
$\operatorname{Aut}(H)$ $C_{11}^2.\GL(2,11)$, of order \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$\operatorname{res}(S)$$F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_{11}:F_{11}$, of order \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{22}:F_{11}$
Complements:$C_{10}$ $C_{10}$
Minimal over-subgroups:$C_{11}:F_{11}$$C_{11}:D_{22}$
Maximal under-subgroups:$C_{11}^2$$D_{11}$$D_{11}$$D_{11}$$D_{11}$
Autjugate subgroups:2420.r.10.b1.b1

Other information

Möbius function$1$
Projective image$C_{22}:F_{11}$