Properties

Label 24192.u.504.l1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(7,14)(8,11)(9,13)(10,15), (1,2), (3,4,6,5)(7,9,15)(8,11,12)(10,13,14), (3,6)(4,5), (3,5,6,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_6^2:C_2^3$
Normal closure:$C_2\times C_4\times \SL(2,8)$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_{12}\times D_6$$C_4\times D_{18}$$D_4\times D_6$
Maximal under-subgroups:$C_2\times D_6$$C_2\times C_{12}$$C_6:C_4$$C_4\times S_3$$C_4\times S_3$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$84$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2\times {}^2G(2,3)$