Properties

Label 24192.u.48.a1
Order $ 2^{3} \cdot 3^{2} \cdot 7 $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,8)$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(7,10,14)(8,9,11)(12,15,13), (7,13,14)(8,10,15)(9,11,12)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_6\times D_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ ${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
$W$${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times D_4$
Normalizer:$D_4\times \SL(2,8):C_6$
Complements:$C_6\times D_4$ $C_6\times D_4$ $C_6\times D_4$ $C_6\times D_4$
Minimal over-subgroups:${}^2G(2,3)$$C_2\times \SL(2,8)$$C_2\times \SL(2,8)$$C_2\times \SL(2,8)$
Maximal under-subgroups:$F_8$$D_9$$D_7$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_4\times \SL(2,8):C_6$