Properties

Label 24192.u.252.i1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times A_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(7,12,11)(10,15,14), (1,2), (1,2)(7,10)(9,13)(11,14)(12,15), (3,6)(4,5), (7,13)(9,10)(11,12)(14,15), (3,6)(4,5)(7,12)(9,14)(10,15)(11,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_4\times \GL(3,2)$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times D_4$
Normalizer:$C_2^6:C_6$
Normal closure:$C_2^2\times {}^2G(2,3)$
Core:$C_2^2$
Minimal over-subgroups:$C_2\times F_8:C_6$$A_4\times C_2^4$$C_2^4:C_{12}$
Maximal under-subgroups:$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^5$$C_2^2\times C_6$

Other information

Number of subgroups in this autjugacy class$63$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2\times {}^2G(2,3)$