Subgroup ($H$) information
| Description: | $C_2^2\times F_7$ |
| Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Generators: |
$\langle(1,2)(7,8)(9,14)(10,11)(12,15), (4,5)(7,11,10,8,15,13,12), (4,5)(7,12,10)(8,15,11), (4,5), (1,2)(3,6)(4,5)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_4\times \SL(2,8):C_6$ |
| Order: | \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \) |
| Exponent: | \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
| $W$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $288$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $D_4\times {}^2G(2,3)$ |