Properties

Label 24192.u.112.g1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}:C_{12}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,2)(7,9,10)(8,13,15)(11,12,14), (1,2)(3,5,6,4)(7,10)(8,11,13,14,15,12), (1,2)(8,13,15)(11,14,12), (1,2), (1,2)(7,11,8,9,12,13,10,14,15), (3,6)(4,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $D_{36}:C_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times D_{36}:C_6$
Normal closure:$C_2\times \SL(2,8):C_{12}$
Core:$C_2^2$
Minimal over-subgroups:$C_6^2.D_6$$D_{18}:C_{12}$
Maximal under-subgroups:$C_{18}:C_6$$C_9:C_{12}$$C_6:C_{12}$$C_{18}:C_4$

Other information

Number of subgroups in this autjugacy class$28$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2\times {}^2G(2,3)$