Subgroup ($H$) information
| Description: | $C_{10}.D_{10}$ |
| Order: | \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rrrr}
3 & 1 & 4 & 0 \\
4 & 3 & 1 & 2 \\
3 & 0 & 4 & 2 \\
4 & 1 & 1 & 4
\end{array}\right), \left(\begin{array}{rrrr}
3 & 0 & 3 & 3 \\
2 & 1 & 3 & 3 \\
0 & 0 & 1 & 0 \\
2 & 0 & 3 & 4
\end{array}\right), \left(\begin{array}{rrrr}
2 & 1 & 3 & 1 \\
0 & 1 & 2 & 3 \\
3 & 3 & 4 & 4 \\
3 & 3 & 0 & 3
\end{array}\right), \left(\begin{array}{rrrr}
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right), \left(\begin{array}{rrrr}
2 & 3 & 2 & 1 \\
4 & 0 & 0 & 2 \\
1 & 2 & 2 & 2 \\
0 & 1 & 1 & 0
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $\SL(2,5):D_{10}$ |
| Order: | \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $F_5^2:D_4$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \) |
| $\operatorname{res}(S)$ | $C_2\times F_5^2$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_5^2$, of order \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $6$ |
| Möbius function | $1$ |
| Projective image | $D_{10}\times A_5$ |