Properties

Label 2359296.a.2304._.D
Order $ 2^{10} $
Index $ 2^{8} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{10}$
Order: \(1024\)\(\medspace = 2^{10} \)
Index: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(2\)
Generators: $\langle(19,20)(21,22), (7,8)(9,10)(19,20)(21,22), (3,5)(4,6)(11,14)(12,13)(15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.A_4^2:C_2^2$
Order: \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times A_4^2:D_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $A_4^2.C_2^4.C_2^3$
Outer Automorphisms: $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.A_4^2.C_2^6.C_2^5$
$\operatorname{Aut}(H)$ Group of order \(366\!\cdots\!200\)\(\medspace = 2^{45} \cdot 3^{6} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 17 \cdot 31^{2} \cdot 73 \cdot 127 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed