Properties

Label 23328.gf.5832.A
Order $ 2^{2} $
Index $ 2^{3} \cdot 3^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(2\)
Generators: $\langle(10,11)(12,13), (10,13)(11,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_3^5:(C_2^2\times S_4)$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^3.S_3^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6^2).C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3^5.C_2^4$
Normalizer:$C_3^5:(C_2^2\times S_4)$
Complements:$C_3^3.S_3^3$
Minimal over-subgroups:$C_2\times C_6$$C_2\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^5:(C_2^2\times S_4)$