Subgroup ($H$) information
| Description: | $C_3^4:D_4$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(14,22,20)(15,19,21), (14,22,20)(16,18,17), (16,18,17), (3,8,5)(6,7,9)(14,20,22) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_3^5:(C_2^2\times S_4)$ |
| Order: | \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_3\times C_6^2).C_3^4.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times \GL(2,3)\times \AGL(2,3)$ |
| $W$ | $C_6^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
| Centralizer: | not computed | |||
| Normalizer: | $C_3^4.C_2^4.C_2$ | |||
| Normal closure: | $C_6^2.C_3^3.C_6$ | |||
| Core: | $C_3\times C_6^2$ | |||
| Minimal over-subgroups: | $C_3^5:D_4$ | $C_6^2:S_3^2$ | $C_6^2:S_3^2$ | $C_6^2:S_3^2$ |
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_3^5:(C_2^2\times S_4)$ |