Properties

Label 23328.gf.36.ir1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:D_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(14,22,20)(15,19,21), (14,22,20)(16,18,17), (16,18,17), (3,8,5)(6,7,9)(14,20,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^5:(C_2^2\times S_4)$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6^2).C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_2^2\times \GL(2,3)\times \AGL(2,3)$
$W$$C_6^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^4.C_2^4.C_2$
Normal closure:$C_6^2.C_3^3.C_6$
Core:$C_3\times C_6^2$
Minimal over-subgroups:$C_3^5:D_4$$C_6^2:S_3^2$$C_6^2:S_3^2$$C_6^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^5:(C_2^2\times S_4)$