Properties

Label 2304.wi.64.d1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times A_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,6)(5,7)(8,10)(9,13)(11,15)(12,14), (4,7)(5,6)(8,15)(9,12)(10,11)(13,14), (4,5,6)(8,10,15)(12,13,14), (1,3,2)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3\times C_2^5:S_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_6.C_2^5$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6\times A_4$
Normal closure:$C_2^6:C_3^2$
Core:$C_3$
Minimal over-subgroups:$C_2^4:C_3^2$$C_2^4:C_3^2$$C_6\times A_4$
Maximal under-subgroups:$C_2\times C_6$$A_4$$A_4$$C_3^2$

Other information

Number of subgroups in this autjugacy class$32$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^5:S_4$