Properties

Label 2304.wi.288.bb1
Order $ 2^{3} $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(2\)
Generators: $\langle(8,10)(9,13)(11,15)(12,14), (4,7)(5,6)(8,10)(11,15), (4,5)(6,7)(8,15)(9,12)(10,11)(13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_3\times C_2^5:S_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_6.C_2^5$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^5\times C_6$
Normalizer:$C_2^6:C_6$
Normal closure:$C_2^6$
Core:$C_1$
Minimal over-subgroups:$C_2^2\times C_6$$C_2^4$$C_2\times D_4$$C_2^4$$C_2\times D_4$$C_2^4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3\times C_2^5:S_4$