Properties

Label 2304.wi.2.a1
Order $ 2^{7} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_2^5:A_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,15)(9,12)(10,11)(13,14), (4,5,6)(8,10,15)(12,13,14), (4,6)(5,7), (4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_3\times C_2^5:S_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_6.C_2^5$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^6.C_2^6.C_3^2.D_6$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times C_2^5:S_4$
Complements:$C_2$
Minimal over-subgroups:$C_3\times C_2^5:S_4$
Maximal under-subgroups:$C_2^6:C_3^2$$C_2^6:C_6$$C_2^5:A_4$$C_2^5:A_4$$C_2^5:C_3^2$$C_3\times C_2^3:A_4$$C_3\times C_2^3:A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^5:S_4$