Subgroup ($H$) information
| Description: | $C_2^4:C_{12}$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(4,7)(5,6)(8,11)(10,15), (4,7)(8,15,11,10)(12,13), (8,10)(9,13)(11,15)(12,14), (8,15)(9,12)(10,11)(13,14), (1,3,2), (4,6)(5,7), (4,5)(6,7)\rangle$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_3\times C_2^5:S_4$ |
| Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_6.C_2^5$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $C_2^{10}.S_4$, of order \(24576\)\(\medspace = 2^{13} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_2^5:S_4$ |