Properties

Label 2304.v.6.t1
Order $ 2^{7} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4\times C_{24}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 1 & 5 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 8 & 13 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 7 & 12 \\ 4 & 3 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 10 & 11 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{24}\times \GL(2,\mathbb{Z}/4)$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8\times S_4$
$\operatorname{Aut}(H)$ $C_2^8.C_2^6$
$\operatorname{res}(S)$$C_2^8$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{24}$
Normalizer:$C_2^2\wr C_2\times C_{24}$
Normal closure:$C_2\times C_{24}\times S_4$
Core:$C_2^3\times C_{24}$
Minimal over-subgroups:$C_2\times C_{24}\times S_4$$C_2^2\wr C_2\times C_{24}$
Maximal under-subgroups:$C_2^3\times C_{24}$$C_2^3\times C_{24}$$C_2^3:C_{24}$$C_2\times C_4\times C_{24}$$C_4^2.C_{12}$$C_2\times D_4\times C_{12}$$C_2^3:C_{24}$$D_4\times C_{24}$$D_4\times C_{24}$$C_4^2.C_2^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times S_4$