Properties

Label 2304.nu.2.K
Order $ 2^{7} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.D_6^2$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,10)(11,14), (2,6,3), (5,8)(9,14)(10,12)(11,13), (5,11)(8,9)(10,14)(12,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^4:D_6^2$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4:S_6$, of order \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_6^2.(C_2^4\times A_4).C_2^3$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times S_7$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^4:D_6^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2^4:D_6^2$
Maximal under-subgroups:$D_6^2:C_2^2$$(C_6\times D_4).D_6$$(C_2\times C_{12}):D_{12}$$C_6^2.C_2^4$$(C_6\times C_{12}):D_4$$C_2\wr C_2^2\times S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$D_6^2:D_4$