Properties

Label 2304.bcb.8.f1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}\times S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7)(5,6), (5,7,6)(8,12,15,14)(9,11,10,13), (5,7), (1,2,3)(5,7,6), (4,6,5)(8,15)(9,10)(11,13)(12,14), (4,7,5), (4,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_4\times C_4.D_{12}$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times C_2^4:S_5$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$S_4\times C_4.D_{12}$
Minimal over-subgroups:$C_2\times C_{12}\times S_4$$S_4\times D_{12}$$C_3:C_8\times S_4$
Maximal under-subgroups:$C_6\times S_4$$C_{12}\times A_4$$A_4:C_{12}$$C_4\times S_4$$D_4\times C_{12}$$S_3\times C_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed