Subgroup ($H$) information
| Description: | $C_4\times S_4$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(4,7)(5,6), (5,7,6)(8,12,15,14)(9,11,10,13), (4,7,5,6)(9,10)(11,13), (4,6,5)(8,15)(9,10)(11,13)(12,14), (4,7,5), (4,6)(5,7)\rangle$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $S_4\times C_4.D_{12}$ |
| Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $D_{12}$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times C_2^4:S_5$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \) |
| $\operatorname{Aut}(H)$ | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{W}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |