Subgroup ($H$) information
Description: | $C_2\times A_4:C_{12}$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
17 & 15 \\
10 & 17
\end{array}\right), \left(\begin{array}{rr}
11 & 10 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
16 & 15 \\
5 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
10 & 11
\end{array}\right), \left(\begin{array}{rr}
13 & 4 \\
8 & 1
\end{array}\right), \left(\begin{array}{rr}
19 & 10 \\
0 & 19
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $(C_6\times S_4):\OD_{16}$ |
Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2\times C_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_6\times A_4).C_2^6.C_2^2$ |
$\operatorname{Aut}(H)$ | $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\card{W}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |