Properties

Label 229376.a.896.B
Order $ 2^{8} $
Index $ 2^{7} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^8$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(896\)\(\medspace = 2^{7} \cdot 7 \)
Exponent: \(2\)
Generators: $\langle(3,4)(5,6)(7,8)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(27,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $\ASigmaL(1,16384)$
Order: \(229376\)\(\medspace = 2^{15} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^4:F_8$
Order: \(896\)\(\medspace = 2^{7} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Automorphism Group: $C_2^4:F_8:A_4$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
Outer Automorphisms: $A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(308281344\)\(\medspace = 2^{21} \cdot 3 \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $\GL(8,2)$
$W$$C_{14}$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2^{14}$
Normalizer:$\ASigmaL(1,16384)$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2\times C_2^{12}.C_{14}$