Properties

Label 226920.b.11346.b1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2 \cdot 3 \cdot 31 \cdot 61 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(11346\)\(\medspace = 2 \cdot 3 \cdot 31 \cdot 61 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left[ \left(\begin{array}{rr} 4 & 21 \\ 0 & 19 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 22 & 25 \\ 0 & 5 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 20 & 36 \\ 0 & 37 \end{array}\right) \right]$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\PGL(2,61)$
Order: \(226920\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 31 \cdot 61 \)
Exponent: \(113460\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \cdot 61 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,61)$, of order \(226920\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 31 \cdot 61 \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{60}$
Normalizer:$D_{60}$
Normal closure:$\PGL(2,61)$
Core:$C_1$
Minimal over-subgroups:$C_{61}:C_{20}$$C_{60}$$D_{20}$
Maximal under-subgroups:$C_{10}$$C_4$

Other information

Number of subgroups in this conjugacy class$1891$
Möbius function$0$
Projective image$\PGL(2,61)$