Properties

Label 22400.a.16._.M
Order $ 2^{3} \cdot 5^{2} \cdot 7 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{70}:C_{10}$
Order: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 59 & 0 \\ 0 & 181 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 86 \end{array}\right), \left(\begin{array}{rr} 86 & 0 \\ 0 & 232 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 128 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 128 & 0 \\ 0 & 191 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{40}.D_{280}$
Order: \(22400\)\(\medspace = 2^{7} \cdot 5^{2} \cdot 7 \)
Exponent: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(860160\)\(\medspace = 2^{13} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times C_4\times C_7:(C_2\times C_6\times F_5)$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed