Properties

Label 224.79.8.m1.a1
Order $ 2^{2} \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{28}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $b^{3}cd^{7}, b^{2}c, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{14}:D_4$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_2^6$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(112\)\(\medspace = 2^{4} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{28}$
Normalizer:$C_2\times D_{28}$
Normal closure:$C_2\times C_{28}$
Core:$C_{14}$
Minimal over-subgroups:$C_2\times C_{28}$$D_{28}$$D_{28}$
Maximal under-subgroups:$C_{14}$$C_4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4\times D_7$