Properties

Label 224.176.2.b1
Order $ 2^{4} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(2\)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, c, d^{14}, bd^{27}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2\times D_{28}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_2^6:(C_2\times S_4)$, of order \(129024\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{res}(S)$$C_2^3:S_4\times F_7$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{28}$
Complements:$C_2$
Minimal over-subgroups:$C_2^2\times D_{28}$
Maximal under-subgroups:$C_2\times D_{14}$$C_2^2\times C_{14}$$C_2\times D_{14}$$C_2^4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$D_{14}$