Properties

Label 224.137.28.a1.a1
Order $ 2^{3} $
Index $ 2^{2} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{2}, c^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{28}.D_4$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times D_4^2$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{28}$
Normalizer:$C_{28}.D_4$
Minimal over-subgroups:$C_2\times C_{28}$$C_2\times Q_8$$D_4:C_2$$\OD_{16}$
Maximal under-subgroups:$C_2^2$$C_4$$C_4$

Other information

Möbius function$-14$
Projective image$C_{14}:D_4$