Subgroup ($H$) information
Description: | $Q_8\times C_{14}$ |
Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$a, c^{7}, c^{4}, b^{2}, c^{14}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_{28}.D_4$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_7\times D_4^2$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_6\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{12}.C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(14\)\(\medspace = 2 \cdot 7 \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_{14}:D_4$ |