Properties

Label 224.122.4.h1
Order $ 2^{3} \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{14}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, d^{14}, d^{4}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2.D_{28}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^4\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$D_4\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{14}$
Normal closure:$C_2^2\times D_{14}$
Core:$C_2\times C_{14}$
Minimal over-subgroups:$C_2^2\times D_{14}$
Maximal under-subgroups:$C_2\times C_{14}$$D_{14}$$D_{14}$$C_2^3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_7:D_4$