Subgroup ($H$) information
Description: | $C_7:C_4$ |
Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$abc^{3}, b^{4}c^{2}, c^{2}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_4.D_{28}$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_7\times D_4^2$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
$\operatorname{res}(S)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2\times D_{28}$ |