Subgroup ($H$) information
Description: | $C_8$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$b^{7}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
Description: | $C_4.D_{28}$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_{14}$ |
Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Automorphism Group: | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_7\times D_4^2$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | $C_{56}$ | |||
Normalizer: | $C_4.D_{28}$ | |||
Minimal over-subgroups: | $C_{56}$ | $\OD_{16}$ | $\SD_{16}$ | $Q_{16}$ |
Maximal under-subgroups: | $C_4$ | |||
Autjugate subgroups: | 224.104.28.b1.b1 |
Other information
Möbius function | $-14$ |
Projective image | $C_2\times D_{28}$ |