Properties

Label 2239488000.n.4._.B
Order $ 2^{11} \cdot 3^{7} \cdot 5^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6^3.D_6$
Order: \(559872000\)\(\medspace = 2^{11} \cdot 3^{7} \cdot 5^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(13,20,16,19)(14,17,15,18), (12,19)(13,14)(15,18)(16,17), (12,16,18,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $A_6^3.S_4.C_2$
Order: \(2239488000\)\(\medspace = 2^{13} \cdot 3^{7} \cdot 5^{3} \)
Exponent: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(4478976000\)\(\medspace = 2^{14} \cdot 3^{7} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $A_6\wr C_3.C_2^3$, of order \(1119744000\)\(\medspace = 2^{12} \cdot 3^{7} \cdot 5^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed