Subgroup ($H$) information
Description: | $C_{192}$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Index: | \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Generators: |
$a^{9}b^{1089}, a^{144}b^{240}, a^{72}b^{216}, b^{386}, a^{96}b^{486}, a^{18}b^{450}, a^{36}b^{324}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_6\times F_{193}$ |
Order: | \(222336\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 193 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{579}.C_{96}.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $193$ |
Möbius function | $-1$ |
Projective image | $C_2\times F_{193}$ |