Properties

Label 222.3.74.a1.a1
Order $ 3 $
Index $ 2 \cdot 37 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(74\)\(\medspace = 2 \cdot 37 \)
Exponent: \(3\)
Generators: $b^{37}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $S_3\times C_{37}$
Order: \(222\)\(\medspace = 2 \cdot 3 \cdot 37 \)
Exponent: \(222\)\(\medspace = 2 \cdot 3 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{74}$
Order: \(74\)\(\medspace = 2 \cdot 37 \)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Automorphism Group: $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Outer Automorphisms: $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,37$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_{36}$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{111}$
Normalizer:$S_3\times C_{37}$
Complements:$C_{74}$
Minimal over-subgroups:$C_{111}$$S_3$
Maximal under-subgroups:$C_1$

Other information

Möbius function$1$
Projective image$S_3\times C_{37}$