Subgroup ($H$) information
| Description: | not computed |
| Order: | \(235298\)\(\medspace = 2 \cdot 7^{6} \) |
| Index: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Exponent: | not computed |
| Generators: |
$\langle(8,10,9,13,11,12,14)(15,21,20,18,17,19,16)(22,25,23,27,26,28,24)(29,30,33,31,32,34,35) \!\cdots\! \rangle$
|
| Derived length: | not computed |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
| Description: | $C_7^6.C_3^2.C_2^4.C_3^4.C_2^3.C_2$ |
| Order: | \(21956126976\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 7^{6} \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^5:(\He_3^2:C_4)$ |
| Order: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Automorphism Group: | $C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \) |
| Outer Automorphisms: | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The quotient is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(131736761856\)\(\medspace = 2^{9} \cdot 3^{7} \cdot 7^{6} \) |
| $\operatorname{Aut}(H)$ | not computed |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Möbius function | not computed |
| Projective image | not computed |