Properties

Label 2187.366.27.p1
Order $ 3^{4} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9^2$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rr} 46 & 36 \\ 72 & 10 \end{array}\right), \left(\begin{array}{rr} 37 & 27 \\ 54 & 46 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_9\wr C_3$
Order: \(2187\)\(\medspace = 3^{7} \)
Exponent: \(27\)\(\medspace = 3^{3} \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 27T434.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9^2.C_3^3.C_6^2$
$\operatorname{Aut}(H)$ $C_3^4:\GL(2,3)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(81\)\(\medspace = 3^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_9^3$
Normalizer:$C_9^3$
Normal closure:$C_9^3$
Core:$C_1$
Minimal over-subgroups:$C_3\times C_9^2$
Maximal under-subgroups:$C_3\times C_9$$C_3\times C_9$$C_3\times C_9$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$27$
Möbius function$0$
Projective image$C_9\wr C_3$