Properties

Label 216000.d.48.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{3} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: not computed
Generators: $b^{3}, e^{2}f^{3}, c^{4}d^{10}, d^{20}, c^{6}d^{18}e^{8}f^{4}, f, d^{6}f$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$W$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5^3:\He_3.C_2^3$
Minimal over-subgroups:$C_{15}^2:(C_3\times D_{10})$$C_3:S_3\times C_5^2:D_5.C_2$$C_3:S_3\times D_5\times C_5:D_5$$C_5^3.S_3^2.C_2$$C_3:S_3\times C_5:(C_5:F_5)$$C_5^3.(C_2.S_3^2)$
Maximal under-subgroups:$C_5^3\times C_3:S_3$$C_3^2\times C_5^2:D_5$$C_5^3:(C_3:S_3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$