Properties

Label 216000.d.30.n1
Order $ 2^{5} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: not computed
Generators: $e^{2}, d^{6}f^{2}, c^{3}f^{2}, c^{6}d^{18}ef, c^{4}d^{10}, d^{20}, ab^{3}c^{10}d^{18}e^{8}f^{4}, d^{15}e^{5}, c^{6}d^{18}e^{8}f^{4}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$W$$D_5^2.C_2^2\times S_3$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_5^2.C_6^2.C_2^4$
Normal closure:$D_5^3.C_3^2:D_6$
Core:$C_3^2$
Minimal over-subgroups:$C_3\times C_5^3.C_6.D_4.C_2$$C_5^2.C_6^2.C_2^4$
Maximal under-subgroups:$C_3\times C_5^2:(C_2\times C_4\times S_3)$$C_3\times C_5^2:(D_6:C_4)$$C_3\times C_5^2:(C_4\times C_3:C_4)$$C_3\times C_5^2:(C_6.Q_8)$$C_3\times C_5^2:(C_2\times C_3:D_4)$$C_3^2\times C_2\times D_5:F_5$$C_3\times C_5^2:(C_6.D_4)$$C_3\times C_5^2:(C_4\times D_4)$$C_5^2.(C_6.Q_8).C_2$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$