Properties

Label 216000.d.18.h1
Order $ 2^{5} \cdot 3 \cdot 5^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: not computed
Generators: $f, e^{2}f^{4}, b^{3}, d^{20}, e^{5}f^{2}, d^{6}e^{8}f^{3}, ac^{2}d^{3}e^{9}, c^{3}d^{9}e^{5}f, c^{6}d^{6}e^{9}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3.(C_4\times D_4)\times S_3$
Normal closure:$D_5^3:\He_3.C_2^3$
Core:$C_5^3:C_{12}$
Minimal over-subgroups:$C_5^3.C_6^2.C_2^3$$C_5^3.(C_4\times D_4)\times S_3$
Maximal under-subgroups:$S_3\times C_5^3:(C_2\times C_4)$$C_5^3:(C_2\times C_4)\times S_3$$C_5^3:(C_2\times C_4)\times S_3$$C_5^3.C_6.C_2^2.C_2$$C_3\times C_5^3:C_4^2$$C_5^3.C_6.C_2^2.C_2$$C_5^3.C_6.C_4.C_2$$C_{10}:F_5^2$$C_5:(C_4\times F_5)\times S_3$$S_3\times F_5^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$