Properties

Label 216000.d.12.t1
Order $ 2^{4} \cdot 3^{2} \cdot 5^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: not computed
Generators: $f, e^{2}, b^{3}, d^{20}, c^{6}d^{6}e^{7}, d^{6}e^{6}f^{2}, ac^{3}d^{4}e^{2}, d^{15}e^{5}f^{4}, c^{4}d^{10}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3.C_6^2.C_2^4$
Normal closure:$C_{15}:D_5^2.S_3^2$
Core:$C_3:S_3\times C_5^3:C_2^2$
Minimal over-subgroups:$C_{15}:D_5^2.S_3^2$$C_5^3.(C_2\times D_6:D_6)$
Maximal under-subgroups:$C_3:S_3\times C_5^3:C_2^2$$C_5^3.S_3^2.C_2$$C_5\times C_5^2:(C_2.S_3^2)$$C_5^2.D_{30}:S_3$$C_5^3.C_3^2:D_4$$C_3\times C_5^3:(C_3:D_4)$$C_3\times C_5^3:(C_3:D_4)$$C_5^3:D_4\times S_3$$C_5^3.C_6.C_2^3$$D_5^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$