Properties

Label 21600.bg.72.b1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times A_5$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(5,6,7,9,8)(11,13,14), (5,7,8,6,9), (5,7,8,6,9)(10,11)(13,15)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_4\times S_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_5\times A_4$
Normalizer:$C_5\times A_4\times A_5$
Normal closure:$C_5\times A_6$
Core:$C_5$
Minimal over-subgroups:$C_5\times A_6$$C_{15}\times A_5$$C_{10}\times A_5$
Maximal under-subgroups:$C_5\times A_4$$A_5$$C_5\times D_5$$C_5\times S_3$
Autjugate subgroups:21600.bg.72.b1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$-4$
Projective image$A_4\times A_6$