Subgroup ($H$) information
| Description: | $C_2^2\times C_{10}$ | 
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Index: | \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \) | 
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) | 
| Generators: | $\langle(5,9,6,8,7)(10,15)(13,14), (1,4)(2,3), (1,4)(2,3)(5,8,9,7,6)(10,14)(13,15), (5,7,8,6,9)\rangle$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_5\times A_4\times A_6$ | 
| Order: | \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times A_6.C_2^2\times S_4$ | 
| $\operatorname{Aut}(H)$ | $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) | 
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $45$ | 
| Möbius function | $0$ | 
| Projective image | $A_4\times A_6$ | 
