Properties

Label 21600.bg.1800.j1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(3,4)(10,14)(13,15), (1,3)(2,4)(10,15)(13,14), (1,2,3)(10,13,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times A_4$
Normal closure:$A_4\times A_6$
Core:$C_1$
Minimal over-subgroups:$C_5\times A_4$$C_2^2:A_4$
Maximal under-subgroups:$C_2^2$$C_3$
Autjugate subgroups:21600.bg.1800.j1.b1

Other information

Number of subgroups in this conjugacy class$360$
Möbius function$0$
Projective image$C_5\times A_4\times A_6$