Properties

Label 2160.dm.90.a1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,12), (6,14)(7,8), (6,14,13), (6,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_3^3:C_{10}$
Order: \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\wr C_2).C_2^3$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}\times D_6$
Normal closure:$S_3^3$
Core:$C_1$
Minimal over-subgroups:$C_{10}\times D_6$$S_3\times D_6$$S_3\times D_6$
Maximal under-subgroups:$C_2\times C_6$$D_6$$D_6$$D_6$$D_6$$D_6$$D_6$$C_2^3$
Autjugate subgroups:2160.dm.90.a1.b1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$S_3^3:C_{10}$