Properties

Label 2160.dm.60.a1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(6,14)(7,8), (6,14,13), (6,14,13)(7,9,8), (6,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_3^3:C_{10}$
Order: \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3\times C_{10}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\wr C_2).C_2^3$
$\operatorname{Aut}(H)$ $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_5\times S_3$
Normalizer:$S_3^3:C_{10}$
Complements:$S_3\times C_{10}$ $S_3\times C_{10}$ $S_3\times C_{10}$
Minimal over-subgroups:$C_5\times S_3^2$$C_3\times S_3^2$$\SOPlus(4,2)$$S_3\times D_6$$\SOPlus(4,2)$
Maximal under-subgroups:$C_3:S_3$$C_3\times S_3$$D_6$
Autjugate subgroups:2160.dm.60.a1.b1

Other information

Möbius function$6$
Projective image$S_3^3:C_{10}$