Properties

Label 2160.dm.4.g1.b1
Order $ 2^{2} \cdot 3^{3} \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:S_3^2$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(6,14)(7,8)(10,12), (6,9)(7,14)(8,13)(10,11), (1,5,4,2,3), (10,11,12), (6,14,13), (6,14,13)(7,9,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_3^3:C_{10}$
Order: \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\wr C_2).C_2^3$
$\operatorname{Aut}(H)$ $\ASL(2,3).D_6.C_2^2$
$\operatorname{res}(S)$$C_4\times S_3^3$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times S_3^3$
Normal closure:$C_5\times S_3^3$
Core:$C_3^3:C_{10}$
Minimal over-subgroups:$C_5\times S_3^3$
Maximal under-subgroups:$C_3^3:C_{10}$$C_3^2:C_{30}$$C_3^2:C_{30}$$C_{30}:S_3$$C_5\times S_3^2$$C_5\times S_3^2$$C_5\times S_3^2$$C_3:S_3^2$
Autjugate subgroups:2160.dm.4.g1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$S_3^3:C_2$