Subgroup ($H$) information
| Description: | $S_3\times C_{30}$ |
| Order: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(10,12), (1,5,4,2,3), (10,11,12), (7,8,9), (6,13)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $S_3^3:C_{10}$ |
| Order: | \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times S_3\wr C_2).C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $S_3^3:C_2$ |