Properties

Label 216.66.4.a1.a1
Order $ 2 \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \He_3$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $d^{6}, b, c^{2}d^{4}, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\He_3:Q_8$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.\SL(3,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$\He_3:Q_8$
Minimal over-subgroups:$C_4\times \He_3$$\He_3:C_4$$\He_3:C_4$
Maximal under-subgroups:$\He_3$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$

Other information

Möbius function$2$
Projective image$C_6:S_3$