Properties

Label 216.36.2.a1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ab, d, b^{6}, b^{4}, cd$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_6.S_3^2$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times \He_3):D_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6.S_3^2$
Minimal over-subgroups:$C_6.S_3^2$
Maximal under-subgroups:$C_2\times \He_3$$C_3^2:S_3$$C_3^2:S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$

Other information

Möbius function$-1$
Projective image$C_3^2:D_6$