Subgroup ($H$) information
Description: | $C_3^2:D_6$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Index: | \(2\) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$ab, d, b^{6}, b^{4}, cd$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
Description: | $C_6.S_3^2$ |
Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^2\times \He_3):D_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Centralizer: | $C_6$ | |||||
Normalizer: | $C_6.S_3^2$ | |||||
Minimal over-subgroups: | $C_6.S_3^2$ | |||||
Maximal under-subgroups: | $C_2\times \He_3$ | $C_3^2:S_3$ | $C_3^2:S_3$ | $C_6\times S_3$ | $C_6\times S_3$ | $C_6\times S_3$ |
Other information
Möbius function | $-1$ |
Projective image | $C_3^2:D_6$ |