Subgroup ($H$) information
| Description: | $C_3$ | 
| Order: | \(3\) | 
| Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Exponent: | \(3\) | 
| Generators: | $\langle(2,4,3)(5,6,7)(8,10,9)\rangle$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_3^2:S_4$ | 
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4:(S_4\times \GL(2,3))$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) | 
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) | 
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_3^3$ | ||
| Normalizer: | $C_3^2:S_3$ | ||
| Normal closure: | $A_4$ | ||
| Core: | $C_1$ | ||
| Minimal over-subgroups: | $A_4$ | $C_3^2$ | $S_3$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Number of subgroups in this autjugacy class | $36$ | 
| Number of conjugacy classes in this autjugacy class | $9$ | 
| Möbius function | $27$ | 
| Projective image | $C_3^2:S_4$ | 
