Properties

Label 216.165.72.b1
Order $ 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $\langle(2,4,3)(5,6,7)(8,10,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^2:S_4$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(S_4\times \GL(2,3))$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_3^2:S_3$
Normal closure:$A_4$
Core:$C_1$
Minimal over-subgroups:$A_4$$C_3^2$$S_3$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$9$
Möbius function$27$
Projective image$C_3^2:S_4$