Subgroup ($H$) information
| Description: | $C_2\times C_6$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $\langle(1,4)(2,3), (1,2)(3,4), (5,7,6)\rangle$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_3^2:S_4$ | 
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian, monomial (hence solvable), and rational.
Quotient group ($Q$) structure
| Description: | $C_3:S_3$ | 
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) | 
| Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4:(S_4\times \GL(2,3))$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) | 
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) | 
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
Related subgroups
| Centralizer: | $C_6^2$ | ||
| Normalizer: | $C_3^2:S_4$ | ||
| Complements: | $C_3:S_3$ | ||
| Minimal over-subgroups: | $C_3\times A_4$ | $C_6^2$ | $C_3:D_4$ | 
| Maximal under-subgroups: | $C_6$ | $C_2^2$ | 
Other information
| Number of subgroups in this autjugacy class | $4$ | 
| Number of conjugacy classes in this autjugacy class | $4$ | 
| Möbius function | $-27$ | 
| Projective image | $C_3^2:S_4$ | 
