Subgroup ($H$) information
Description: | $C_{77}$ |
Order: | \(77\)\(\medspace = 7 \cdot 11 \) |
Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(77\)\(\medspace = 7 \cdot 11 \) |
Generators: |
$a^{4}, b^{7}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{77}:C_{28}$ |
Order: | \(2156\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 11 \) |
Exponent: | \(308\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_7:C_4$ |
Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Automorphism Group: | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{77}.C_{15}.C_6.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_7\times C_{154}$ | |
Normalizer: | $C_{77}:C_{28}$ | |
Complements: | $C_7:C_4$ | |
Minimal over-subgroups: | $C_7\times C_{77}$ | $C_{154}$ |
Maximal under-subgroups: | $C_{11}$ | $C_7$ |
Other information
Möbius function | $0$ |
Projective image | $C_{77}:C_4$ |